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1. INTRODUCTION:

The determination of complex systems reliability has become a

subject of great concern to reliability engineers. As systems become
increasingly complex, determination of system reliability becomes
increasingly difficult.

The purpose of this report is to survey some of the most recent
developments in this area with a view to expose reliability engineers
to these techniques. An algorithm that seems to be the most efficient

[ to date is delineated. The concepts surveyed are then extended to
calculation of time dependant complex systems reliability and the

availability of repairable systems.
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1.1.

La2.

Assumptions and Notation

1)

Assumptions

A complex system can be expressed as a network composed of

many nodes and components.

2) A set of nodes which are all reliable includes two distinct
nodes, i.e. the input node s and the output node t .
3) Each component may be represented as a two-terminal device and
has its own reliability.
4) The state of each component or of the network is either good
(operating) or bad (failed).
5) The states of all components are statistically independent.
Notation
Xi = random variable which denotes the state of i-th component
0 = bad state
1 = good state
P1 = P(Xi-O) » P =Py if all components are the same
q = 1l- Py - P(x1-1); B if all components are the same
Rs = gystem reliability
Rf = gystem unreliability
=1-R
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2.2.

2.3.

Classification of Complex Systems

Series - parallel system

For m components in series

m
R = I q
s 1=1 i

For n components in parallel

n
R.= Ilp
f =1 j

For m components in series and n components in parallel

n m
R- n(l" Tl'q)o
£ ym1 fut

k - out of - n system

n
& 5w q

r=k
where the components are identical.
Non series-parallel systems

A complex system may be composed of non series-parallel
sub-systems e.g. a bridge circuit. However, it is not easy
to obtain the reliability of such systems. We next introduce
the concept of a tie set and a cut set.

Definition: A tie set i= a set of components which forms a

path connected from s to t .

Definition: A cut set is a set of components which separates all

connections from s to t if it is deleted from

the system.




If b represents the total number of components, we have

b
R = ¥ B p et

1=0

b
R, = I C() piqb_i
i=0

Where

B(i) = total number of tie sets of size i.

C(1) = total number of cut sets of size i.
If we have the information about the smallest number of cut gets
say ¢, then the following upper and lower bounds on system

unreliability can be obtained

b b
R, = 1 cpld™t < ECwte @
i=0 i=c
b b-(n~-1)
b-1 1 b, i b-1i
R, = IBM)p "¢ < Loo(Prq 2}
i=0 1=0

The second inequality comes from the fact that it takes at

least (n-1) components to connect a network with n nodes.

From (2) we have

b-(n-1) i
Wow pagly gy Clypig™e
f s — 1=0 i

b 3
: AP (li’)piqb -
' {=b~(n-2)

i Combining this with (1) we get

b b
by 1 b-1 b. 1 b-1 )
1=b~ (n-2) fwc

;! £ Agpe " 2 R 5 20
|
| which implies the upper and lower bounds on system unreliability, [10].

L-E-—g_—._._________d__‘_k_ o — .



Alternatively, Esary and Proshan, [1], have obtained the following

tie and cut bounds on system reliability

k r
jzl(l : izcjpi) SR e j:l(l 3 izajqi)'
where Cj = jth minimal cut set.
Bj = jth minimal tie set.

In the caiculation of system reliability it has been pointed out that
computation time would be reduced by calculating network reliability
using cut sets instead of tie sets.

Now

C, = event that all components fail in Cj'

3

Since E& might not be mutually exclusive, we have, [9],

k —
R. = P(U C.)
£ go1 3
f ko e
= 3 P(C,) - 5 P €.
TSI G R T 37
E + T P(C;NC;NCy )
; L T R e S
, Kl X =
d ] - e ww wo ¥ DT HAC) (4)
2 jgl j

which is the exact expression for system unreliability. However, it
is not good for a large network to calculate exact unreliability according

to the above formula.




Although minimal cut sets Cj are not mutually exclusive events, it

has been suggested, [3], that equation (4) be approximated by

: k_ R
] R, = P(UC) = I P(C)
? j=1 j=1 J

which would be a good approximation when Py is small.

O o P s P o,
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3.1.
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3.3.

Several Approaches to Calculate System Reliability

Inspection methods [8]

In this method reliability is obtained in a series or parallel
manner by inspection.

If the system is composed of a small number of units, it is

easy to write down the probability of success of the combination.

Event-space methods [8]

A list of all possible logical cccurrences,i.e. success or failure,
in the system is made. Since all these events are mutually
exclusive, the sum of the probability of each event yields the
reliability.

Path-tracing methods [8]

In this method, only successful paths (which are generally not

mutually exclusively) form favorable events. Since they are not

mutually exclusive, the reliability is given by expansion and

cancellation of terms.

Misra and Rao, [7], gave the path tracing algorithm taking account

of the loop in the network. This is summarized as follows:

Let n = number of nodes, b = number of components.

Step 1: Find out all possible paths from s to t and sum them up.

Step 2: Find all paths with only one loop and assign a negative
sign to their sum.

Step 3: Find all paths with two loops and assign a positive sign

to their sum.

_______________.__..-_..J
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Step 4: Repeat step 2 and step 3 for all loops until the maximum

number of loops is b - (n-1).

- A S DA A TS A

Assign a negative sign to that sum whose number of loops

-

is odd.

Assign a positive sign to that sum whose number of loops

is even.

Summing up the probability for all loops yields the reliability.
Another approach to find a path from s to t was derived by Kim,

Case and Ghare, [5]. They used the n-step path matrix P to

n
ij

R T TSy Py a——

enumerate all possible paths from s to t.

. n .
The n-step path matrix P can be written as

— —

0 PR L
s2 st
n n
PZs 2 et PZt
|
Pn = [] | i N\ :
| | \
L )
n n
P -
| ts Pt2 g 5

where component (i,j) of P1 is defined by
4 e { (i,j) if there exists a component from i to j
P
1] 0 otherwise

Then P" is found by the recursive relationship:

where the operation symbol + i~ defined as follows:

P:;i'j for k = 8,2,. . . .L if all three conditions :
below are met

0 otherwise




3.4.

n-1
L i
1
ij $# 0
¢ n-1
+ ¢ Pkt
where Pijtn represents £-th n-step path from i to j.

This implies that if three conditions aboe are met, then we add
node j to a sequence of nodes for the (n-1) step path { from
i to k to form the n-step path r from i to j. In other words,
the operation + implies Boolean OR summation. The solution of
this operation + can be oltained by finding ﬂ;t for all n for
which ' # 0.

st

Introducing the following operation

3 9

i i
Lz(Tp, 3y zlip I
K 3 K j

i i
(e, H1* = e, H**
k j k j

ylelds the approximate reliability, where pj is any nonnegat ive

real number and i, is any nonnegative integer.

3

Decomposition methods [8]

We can decompose a complex system into suitable equivalents

whose reliabilities are readily calculated using successive

application of a conditional probability theorem. The technique

9




R

must begin to select a suitable equivalent. Suppcse that one

can find a suitable equivalent, say X.
Then the system reliability is given by
1
R = T P (system good|X=i)P(X=1i).
s
i=0
Krishnamurthy and Komissar, [6), gave the algorithm to find
suitable equivalents by using the input matrix, the reliability
matrix, and the reachability matrix.
We shall introduce this algorithm below.
Denote the reachability matrix byl whose elementU1j is such

that

1 if node j can be reached from noe i

v =
13 0 otherwise

Step 1: Pick (i,j) such that (i) 1 # j (ii) LJij =1
(411) i # s , J # t .

Step 2: Put k such that Uik =1,U . =1, k#1i# jin the

kj

set L which is the set of nodes of the equivalent.

Step 3: Add i and j to L as end points.

Step 4: If each component with a node internal to L has its other
node in L, then label the set of components as M. Add to
M the component whose nodes are the endpoints of L.

Step 5: Treat the equivalent, i.e. M and L, as a new network
and search it for smaller equivalents.

Repeating until all equivalents are suitable equivalents yields an

easy calculation of system reliability.

10




3.5. Cut set and tie set methods (8]

As mentioned before, (sec. 2.3), this might be the most
efficient technique to calculate the reliability of a
complex system.

Jensen and Bellmore, [4], have presented an algorithm to

determine the minimal cut set which provides for the

construction of a tree.

Step 1: Create three vertices for the tree indexed 0, 1
and 2, and edges (0,1) and (1,2) labeled sT and
tF, respectively. |

Step 2: Choose the unscanned vertex with the greatest
index and mark it scanned. If there are no scanned
vertices, the algorithm terminates.

Find the unique simple path (i.
Let Y, = {x| an edge in £, is labeled xT}
Yoy ¥ {x| an edge in ﬂi is labeled xTF}
Y,. = {x| x 1s in N but not in Y, or Y, .}

3i 13 23

W, = {x| x 1s in Y,, and it is a terminal of a
}

component whose other terminal is Yli

If wi = ¢ , then go to step 7.
Otherwise, choose y ¢ Wi.

Yea " Vgl Vg =Y
If the subnetwork Y41 is not connected, then go to

step 4. Otherwise go to step 3.

11
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Step 3:

Step 4:

Step 5:

Step 6:

Create two new vertices indexed k and k+l1 where k

is 1 greater than the number of vertices currently
in the tree.

Create two new edges (i,k) and (i, k+1), labeled

yT and yF, respectively.

Go to step 2.

Find the set of nodes Y5 which defines the connected
subnetwork including t .

If Y21C: Y5 , 80 to step 5.

Otherwise go to step 6.

Create vertex k and edge (i,k) labeled yT where k 4

is one greater than the number of vertices currently

in the tree. Determine the set Y6 = YA - Ys.

For each number z € Y create a vertex of the tree

69
and an edge labeled zT. If (Y6f is the number of

members in Y6' vertices k+1, k+2, . . ., k+|Y6| will
be created. Edges (k,k+1), (k+1,k+2),. . ., (k+lY6|—l,
k+lY6l) will also be created.

Finally, create vertex k+lY6} + 1 and edge

(i, k+ |Y6| +1)  labeled yF.

Go to step 2.

Create one new vertex indexed k and an edge (i,k)
labeled yF.

Go to step 2.

12




Step 7: A minimal cut has been generated at this step.
o i T
Xi =N - Yli
This heuristic algorithm cannot, however, yield system
reliability easily since the components in the minimal
cut set are not mutually exclus * . We shall give a

more heuristic algorithm to find the modified cut at

next section.

An algorithm for Network Reliability

We shall introduce the procedure by Hansler et.al., (3], which
produces modified cut sets and seems to be the best algorithm to
calculate system reliability to date. The minimal set of mutually
exclusive events produced by this algorithm are called modified
cut sets. This algorithm, generally speaking, performs a depth
first search of the given network starting at node s and
traversing several components at the same time.
Step 1: (Initialization)

a) N = set of all nodes except s

b) C = set of all components not incident to s

F = set of all components incident ot s and t.

1

Sl- set of all components incident to s and not to t.

c) Construct a binary number B, consisting of ]Sl| digits b

1 1k’

b1 for 1 <k < |s1|

d) 1i=1

13




Step 2:

L Step 3:

a) Ti = subset of S1 = {sik} such that Sgp € l‘i if bik = ]
Sk ¢ T, M0 h .~
b) Mi = gset of all nodes contained in N and incident to
components contained in Ti
c) N=N - Mi
d) Fi+1 = set of all components contained in C and
incident to t and adjacent to any components contained
in T,
i
e) Si+l = set of all components contained in C and incident
to nodes in N other than t and adjacent to any component
contained in Ti
£) 6 = 0= Gl Ty
Ifs ., #¢
then a) Construct a binary number Bi+1 consisting of
1S4y | digits by, o
bi+1,k =1 for 1 <k 5_]Si+l|
by 1=4 +1
c) Go to step 2
Otherwise
O
e) For a modified cut set
i+1 s
cs = iF, T 5, -« 1)1
IR Tt e S
where TZ = all components in T are assumed
£
to be operative.
14
i s bt sicasicinn " -




Step 4:

et T P
b) N=N Mi

c) B1 = Bi—l (module 2)
If Bi >0

then d) Go to step 2
Otherwise

e) Go to step 5.
Step 5:

a) =14 -1

if 1>0
then b) Go to step 4

Otherwise

c) Stop.
Theorem: The modified cut set generated above is | 9
(i) collective exhaustive
(i1) mutually exclusive ‘
(iii) contains minimal cuts

This theorem can be recognized from the following example. |

Example {
As an example of this algorithm, we consider a bridge circuit as shown {
in Figure 1. 2
a d
1
3
Figure 1
15




Step 1:

Step 2:

Step 3:

Step 2:

Step 3:

Step 4:

a)

b)

[2,3,4]
[c,d,e]
(¢]
(a,b]

[a,b]
(2,3]
(4]
[d,e]
[c]
{(¢]

[c]
[¢]
(4]
(]
(6]
[¢]
[¢]
(a,b,d,e,c]
[¢]
[4]

16




Step 2:

Step 3:

Step 4:

Step 2:

Step 3:

Step 4:

Step 5:

a)
b)
c)
d)
e)
£)
d)
e)
a)
b)
c)
d)
a)
b)
c)
d)
e)
£)
d)
e)
a)
b)
c)

a)

[c]
(3]
(4]
[e]
[¢]
(4]
(¢]
[a,b,d,e,c]
[e]
[3,4]
0

to step 2

(]

(¢}

[3,4]

(6]

(]

[e]

(]
[a,b,d,c]
[e]

[3,4]

=1

1
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Step 4:

Step 2:

Step 3:

Step 2:

Step 3:

Step 4:

Step 2:

a)

1}

[c,d,e]

(3,4]

(b]
(3]
(4]
[e]
[c]
[d]
i

2
[c]
[¢]
[4]
{d}
[¢]
[¢]
(¢]
[b,a,c,d,e]
[d]
[4]
0
(4]
(4]

19
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Step 5: a) 1 =0
¢) Stop.
The example above produces seven modified cut sets;

cs, = [a,b,c,d,e]

1
cs, = [a,b,c,d,e]
cs, = [a,b,c,d,e]
cs, = (a,b,c,d]
cs, = [a,b,c,d,e]
CS6 = [a,b,c,e]
CS7 = [a,b]

which satisfy the statements (i) - (iii) of theorem.




5. Application to Time Dependent Reliability
Using the modified cut sets generated by the previous algorithm,
we attempt to develop some expressions for time dependent complex

systems reliability.

Notation:
X(t) = the state of a component at time t.
F(t) = 1 - F(t)
= P(X(t)= 1)

= probability that the component performs adequately over

[0,t].

CSj = jth modified cut set

t, = [¢s,

J l Jl

= number of operative components in jth modified cut set

s. = |cs,]|
4 J J
1 = number of failed components in jth modified cut set
4

Assumpticn:

1 1. Each component fails in accordance with the same distribution,
i.e. F(t).

2. More than two components don't fail at the same time.

R(t) = time dependent system reliability




f St e g

|
|
|

Theorem: The time dependent system unreliability is given by

R(t) = 1 - R(t) |

(ol e r e B r t s,
= 15 F@)If) rew) 1T areo
=1

where ¢ is number of modified cut sets. i
Proof: Note that

r
[F(t)] . probability that r, components don't fail

3
at time t.
t s
s.!f (Fx)) 71 )
i o
= probability that the last one of sj
components fail at time t.
The results follows from the fact that each modified cut set
is a mutually exclusive event.
From this theorem it can be easily shown

(1) The hazard rate function z(t) of complex system is given

z(t) = dR(t)/R(t)

: c 3 t s e 8, 41— r,_
: Ls !E r, [ (F)] 37Yar() + F(e) [F(e)] }F(t)] Ilecey
3 J-l j j o
€ s s.1
1- I s, !F(e)] I [ rx 1 I7hF )
j=1 o
where f(t) = dF(e)

dt

# 23




(i1) The mean time to system failure (MTTF) is given by

MITE = [ "R(L)dt
“tdR
%)z (t)

< ™ t iy el o P T
=j§15j![0 {-yy JARI¢O) dF(X) + F(t) [F(t)] FIF(e)] 77 edF(t)

(iii) The upper and lower bound on time dependent system
unreliability is given by

o b

1=b (n-2) O LF (O] MR £ R

b i 7 — | -— -
igc(lz) [F(o)] i|_F(r:)J o > R(E)

where b number of components

n = number of nodes

c smallest number of cut setg

&' 6. Application to .3 Repairable Complex Systems

For convenierce, we make an assumption that e:ich

component has exponential failure and repair distribution with

l rate A and u, respectively.
Let X(t) = random variable of the each component state at time t.
0 = failure state

1 = operating state

f Pij(t) = probability that a component will be in state j at

time t, given that it was in state i at time O.

Since each component generates two-state continuous time Markov

Pt e T

; chain, we have pointwise availability, Pll(t), and unavailability,

24




Plo(t), of each component:

b, A o -OHe

Pt = e Y ia
= A _ A o -OHe
Piolt) = 300 = a2 €

where Pll(W)

P10

u/ (A+u) represents limiting availability,

A/ (A\+u) represents limiting unavailability.

Now our interest is to determine pointwise (or limiting)
availability of a complex system.
Buzacott [2] suggested network approaches which are based on successive

reduction of the network into series-parallel system and on minimal

paths or cuts concepts.

Ti Singh and Billinton [9] extended Buzacott's methods into the

z explicit formulae for system availability mean cycle time and
3 failure frequency in the steady - state.

As pointed out before, application of Hdnsler's algorithm to a

i complex repairable system yields more explicit formulae for

pointwise or limiting availability.
Let A(t) a pointwise availability of complex system

A(®) = limiting availability of complex system.

Using the same notation as Chap. 5, we have Theorem: If

H¥nsler's algorith is available, then the pointwise unavailability

25




of the complex system is given by

; ° i S £
A(t) = I[P (o] Jip (0]

and limiting unavailability will be given by

€
A = 5 [P @) JFPH(«»]J

Cc
= j§1

5. y
o_&_) J(_lLo b

where A(t) = 1 - A(t) and A(®) =1 - A(®) yield the pointwise
and limiting availability. Since this comes directly from Hansler's

theorem, the proof can be omitted.

Also the upper and lower bound on pointwise or limiting unavailability

is given by
¢ 2 oz Ly ©1 L, 017 <
i=p% (n-2) (P10t 11't < A(t)

b ;
b i- Bl
1§c(1)[P10(t)] I__Pll(t)] > A(t)

b
i-bz(n 2)(1)(X+u) (A+u) ﬁ'A(w)
-
Z ( )(A+u) (A+u) > A(®)

However, this approach might not derive the explicit formula

} for the failure frequency.




CONCLUSIONS

We have reviewed some of the major new algorithms for calculating
the reliability of a complex system. An application of two of the
algorithms to the calculation of time dependent reliability and to thc
calculation of reliability for a rapairable complex system is also

discussed.
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ST TTCNIY

METRIC SYSTEM
BASE UNITS:
Quantity Unit Sl Symboi Formula
length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd
SUPPLEMENTARY UNITS:
plane angle radian rad
solid angle steradian sr
DERIVED UNITS:
Acceleration metre per second squared m's
activity (of a radioactive source) disintegration per second (disintegration)/s
angular acceleration radian per second squared rad’s
angular velocity radian per second rad/s
area square metre m
density kilogram per cubic metre : kgm
electric capacitance farad F A-slV
electrical conductance siemens S AN
electric field strength volt per metre Vim
electric inductance henry H V-s/A
electric potential difference volt Y WA
electric resistance ohm ViA
electromotive force volt Y WA
energy joule ] N-m
entropy joule per kelvin s K
force newton N kg-m/s
frequency hertz Hz (cycle)s
illuminance lux Ix Im/m
luminance candela per square metre s cd/m
luminous flux lumen Im cd-sr
magnetic field strength ampere per metre e A/m
magnetic flux weber Wb Vs
magnetic flux density tesla T Wb/m
magnetomotive force ampere A
power watt w Jis
pressure pascal Pa N/m
quantity of electricity coulomb C Ass
quantity of heat joule J N-m
radiant intensity watt per steradian Wisr
specific heat joule per kilogram-kelvin : Jikg-K
stress pascal Pa N/m
thermal conductivity watt per metre-kelvin Wim-K
velocity metre per second mis
viscosity, dynamic pascal-second Pas
viscosity. kinematic square metre per second s m's
voltage volt 1 WIA
volume cubic metre m
wavenumber reciprocal metre : (wave)m
work joule ) N-m
SI PREFIXES:
Multiphication Factors Prefix SI Symbol
1 000 000 000 000 = 10"? tera T
1 000 000 000 = 10" Rige G
1 000 000 = 10* mega M
1000 = 10° kilo k |
100 = 10? hecto* h
10 = 10’ deke” da ‘
0.1- 10" deci* d '
0.01 = 1072 centi® >
0001 = 10" milli m
0.000 001 = 10" * micro "
0.000 N00 003 = 10-" nano n
0.000 000 000 001 = 10~ ico r
0.000 000 000 000 001 = 10~ emto
0.000 000 000 000 000 001 - 10 ' atto ]
* To be avoided where possible.
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—

MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the ¢? areas of informatior. sciences
and intelligence. The principal technical mission areas

are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

O\UTION,

eR\CAN
%,

o
) Q
%, S
™ 3 Lﬂa’)

” 76 19‘16




